The most common type of data communications equipment (DEC) is the data communications modem. Alternate names include datasets, dataphones, or simply modems. The word modem is a contraction derived from the words modulator and demodulator.

In the 1960s, the business world recognized a rapidly increasing need to exchange digital information between computers, computer terminals, and other computer-controlled equipment separated by substantial distances. The only transmission facilities available at the time were analog voice-band telephone circuits. Telephone circuits were designed for transporting analog voice signals within a bandwidth of approximately 300 Hz to 3000 Hz. In addition, telephone circuits often included amplifiers and other analog devices that could not propagate digital signals. Therefore, voice-band data modems were designed to communicate with each other using analog signals that occupied the same bandwidth used for standard voice telephone communications. Data communications modems designed to operate over the limited bandwidth of the public telephone network are called voice-band modems.

Because digital information cannot be transported directly over analog transmission media (at least not in digital form), the primary purpose of a data communications modem is to interface computers, computer networks, and other digital terminal equipment to analog communications facilities. Modems are also used when computers are too far apart to be
directly interconnected using standard computer cables. In the transmitter (modulator) section of a modem, digital signals are encoded onto an analog carrier. The digital signals modulate the carrier, producing digitally modulated analog signals that are capable of being transported through the analog communications media. Therefore, the output of a modem is an analog signal that is carrying digital information. In the receiver section of a modem, digitally modulated analog signals are demodulated. Demodulation is the reverse process of modulation. Therefore, modem receivers (demodulators) simply extract digital information from digitally modulated analog carriers.

The most common (and simplest) modems available are ones intended to be used to interface DTEs through a serial interface to standard voice-band telephone lines and provide reliable data transmission rates from 300 bps to 56 kbps. These types of modems are sometimes called telephone-loop modems or POTS modems, as they are connected to the telephone company through the same local loops that are used for voice telephone circuits. More sophisticated modems (sometimes called broadband modems) are also available that are capable of transporting data at much higher bit rates over wideband communications channels, such as those available with optical fiber, coaxial cable, microwave radio, and satellite communications systems. Broadband modems can operate using a different set of standards and protocols than telephone loop modems.

A modem is, in essence, a transparent repeater that converts electrical signals received in digital form to electrical signals in analog form and vice versa. A modem is transparent, as it does not interpret or change the information contained in the data. It is a repeater, as it is not a destination for data—it simply repeats or retransmits data. A modem is physically located between digital terminal equipment (DTE) and the analog communications channel. Modems work in pairs with one located at each end of a data communications circuit. The two modems do not need to be manufactured by the same company; however, they must use compatible modulation schemes, data encoding formats, and transmission rates.

Figure 4-27 shows how a typical modem is used to facilitate the transmission of digital data between DTEs over a POTS telephone circuit. At the transmit end, a modem receives discrete digital pulses (which are usually in binary form) from a DTE through a serial digital interface (such as the RS-232). The DCE converts the digital pulses to analog signals. In essence, a modem transmitter is a digital-to-analog converter (DAC). The analog signals are then outputted onto an analog communications channel where they are transported through the system to a distant receiver. The equalizers and bandpass filters shape and band-limit the signal. At the destination end of a data communications system, a modem receives analog signals from the communications channel and converts them to digital pulses. In essence, a modem receiver is an analog-to-digital converter (ADC). The demodulated digital pulses are then outputted onto a serial digital interface and transported to the DTE.

![Diagram showing the data communications modems - POTS analog channel](image)

FIGURE 4-27 Data communications modems - POTS analog channel
4-12-1 Bits per Second versus Baud

The parameters bits per second (bps) and baud are often misunderstood and, consequently, misused. Baud, like bit rate, is a rate of change; however, baud refers to the rate of change of the signal on the transmission medium after encoding and modulation have occurred. Bit rate refers to the rate of change of a digital information signal, which is usually binary. Baud is the reciprocal of the time of one output signaling element, and a signaling element may represent several information bits. A signaling element is sometimes called a symbol and could be encoded as a change in the amplitude, frequency, or phase. For example, binary signals are generally encoded and transmitted one bit at a time in the form of discrete voltage levels representing logic 1s (highs) and logic 0s (lows). A baud is also transmitted one at a time; however, a baud may represent more than one information bit. Thus, the baud of a data communications system may be considerably less than the bit rate.

4-12-2 Bell System-Compatible Modems

At one time, Bell System modems were virtually the only modems in existence. This is because AT&T operating companies once owned 90% of the telephone companies in the United States, and the AT&T operating tariff allowed only equipment manufactured by Western Electric Company (WECCO) and furnished by Bell System operating companies to be connected to AT&T telephone lines. However, in 1968, AT&T lost a landmark Supreme Court decision, the Carterfone decision, which allowed equipment manufactured by non-Bell companies to interconnect to the vast AT&T communications network, provided that the equipment met Bell System specifications. The Carterfone decision began the interconnect industry, which has led to competitive data communications offerings by a large number of independent companies.

The operating parameters for Bell System modems are the models from which the international standards specified by the ITU-T evolved. Bell System modem specifications apply only to modems that existed in 1968; therefore, their specifications pertain only to modems operating at data transmission rate of 9600 bps or less. Table 4-11 summarizes the parameters for Bell System–equivalent modems.

4-12-3 Modem Block Diagram

Figure 4-28 shows a simplified block diagram for a data communications modem. For simplicity, only the primary functional blocks of the transmitter and receiver are shown.

![Modem Block Diagram](image)

FIGURE 4-28 Simplified block diagram for an asynchronous FSK modem

Fundamental Concepts of Data Communications 197
The basic principle behind a modem transmitter is to convert information received from the DTE in the form of binary digits (bits) to digitally modulated analog signals. The reverse process is accomplished in the modem receiver.

The primary blocks of a modem are described here:

1. **Serial interface circuit.** Interfaces the modem transmitter and receiver to the serial interface. The transmit section accepts digital information from the serial interface, converts it to the appropriate voltage levels, and then directs the information to the modulator. The receive section receives digital information from the demodulator circuit, converts it to the appropriate voltage levels, and then directs the information to the serial interface. In addition, the serial interface circuit manages the flow of control, timing, and data information transferred between the DTE and the modem, which includes handshaking signals and clocking information.

2. **Modulator circuit.** Receives digital information from the serial interface circuit. The digital information modulates an analog carrier, producing a digitally modulated analog signal. In essence, the modulator converts digital changes in the information to analog changes in the carrier. The output from the modulator is directed to the transmit bandpass filter and equalizer circuit.

3. **Bandpass filter and equalizer circuit.** There are bandpass filter and equalizer circuits in both the transmitter and receiver sections of the modem. The transmit bandpass filter limits the bandwidth of the digitally modulated analog signals to a bandwidth appropriate for transmission over a standard telephone circuit. The receive bandpass filter limits the bandwidth of the signals allowed to reach the demodulator circuit, thus reducing noise and improving system performance. Equalizer circuits compensate for bandwidth and gain imperfections typically experienced on voiceband telephone lines.

4. **Telco interface circuit.** The primary functions of the telco interface circuit are to match the impedance of the modem to the impedance of the telephone line and regulate the amplitude of the transmit signal. The interface also provides electrical isolation and protection and serves as the demarcation (separation) point between subscriber equipment and telephone company–provided equipment. The telco line can be two-wire or four-wire, and the modem can operate half or full duplex. When the telephone line is two wire, the telco interface circuit would have to perform four-wire-to-two-wire and two-wire-to-four-wire conversions.

5. **Demodulator circuit.** Receives modulated signals from the bandpass filter and equalizer circuit and converts the digitally modulated analog signals to digital signals. The output from the demodulator is directed to the serial interface circuit, where it is passed on to the serial interface.

6. **Carrier and clock generation circuit.** The carrier generation circuit produces the analog carriers necessary for the modulation and demodulation processes. The clock generation circuit generates the appropriate clock and timing signals required for performing transmit and receive functions in an orderly and timely fashion.

4-12-4 Modem Classifications

Data communications modems can be generally classified as either asynchronous or synchronous and use one of the following digital modulation schemes: amplitude-shift keying (ASK), frequency-shift keying (FSK), phase-shift keying (PSK), or quadrature amplitude modulation (QAM). However, there are several additional ways modems can be classified, depending on which features or capabilities you are trying to distinguish. For example, modems can be categorized as internal or external; low speed, medium speed, high speed, or very high speed; wide band or voice band; and personal or commercial. Regardless of how modems are classified, they all share a common goal, namely, to convert digital pulses to analog signals in the transmitter and analog signals to digital pulses in the receiver.
1. Automatic dialing, answering, and redialing
2. Error control (detection and correction)
3. Caller ID recognition
4. Self-test capabilities, including analog and digital loopback tests
5. Fax capabilities (transmit and receive)
6. Data compression and expansion
7. Telephone directory (telephone number storage)
8. Adaptive transmit and receive data transmission rates (300 bps to 56 kbps)
9. Automatic equalization
10. Synchronous or asynchronous operation

4-12-5 Asynchronous Voice-Band Modems

Asynchronous modems can be generally classified as low-speed voice-band modems, as they are typically used to transport asynchronous data (i.e., data framed with start and stop bits). Synchronous data are sometimes used with an asynchronous modem; however, it is not particularly practical or economical. Synchronous data transported by asynchronous modems is called isochronous transmission. Asynchronous modems use relatively simple modulation schemes, such as ASK or FSK, and are restricted to relatively low-speed applications (generally less than 2400 bps), such as telemetry and caller ID.

There are several standard asynchronous modems designed for low-speed data applications using the switched public telephone network. To operate full duplex with a two-wire dial-up circuit, it is necessary to divide the usable bandwidth of a voice-band circuit in half, creating two equal-capacity data channels. A popular modem that does this is the Bell System 103-compatible modem.

4-12-5-1 Bell system 103-compatible modem. The 103 modem is capable of full-duplex operation over a two-wire telephone line at bit rates up to 300 bps. With the 103 modem, there are two data channels, each with their own mark and space frequencies. One data channel is called the low-band channel and occupies a bandwidth from 300 Hz to 1650 Hz (i.e., the lower half of the usable voice band). A second data channel, called the high-band channel, occupies a bandwidth from 1650 Hz to 3000 Hz (i.e., the upper half of the usable voice band). The mark and space frequencies for the low-band channel are 1270 Hz and 1070 Hz, respectively. The mark and space frequencies for the high-band channel are 2225 Hz and 2025 Hz, respectively. Separating the usable bandwidth into two narrower bands is called frequency-division multiplexing (FDM). FDM allows full-duplex (FDX) transmission over a two-wire circuit, as signals can propagate in both directions at the same time without interfering with each other because the frequencies for the two directions of propagation are different. FDM allows full-duplex operation over a two-wire telephone circuit. Because FDM reduces the effective bandwidth in each direction, it also reduces the maximum data transmission rates. A 103 modem operates at 300 baud and is capable of simultaneous transmission and reception of 300 bps.

4-12-5-2 Bell system 202T/S modem. The 202T and 202S modem are identical except the 202T modem specifies four-wire, full-duplex operation, and the 202S modem specifies two-wire, half-duplex operation. Therefore, the 202T is utilized on four-wire private-line data circuits, and the 202S modem is designed for the two-wire switched public telephone network. Probably the most common application of the 202 modem today is caller ID, which is a simplex system with the transmitter in the telephone office and the receiver at the subscriber’s location. The 202 modem is an asynchronous 1200-baud transceiver utilizing FSK with a transmission bit rate of 1200 bps over a standard voice-grade telephone line.
4-12-6 Synchronous Voice-Band Modems

Synchronous modems use PSK or quadrature amplitude modulation (QAM) to transport synchronous data (i.e., data preceded by unique SYN characters) at transmission rates between 2400 bps and 56,000 bps over standard voice-grade telephone lines. The modulated carrier is transmitted to the distant modem, where a coherent carrier is recovered and used to demodulate the data. The transmit clock is recovered from the data and used to clock the received data into the DTE. Because of the addition of clock and carrier recovery circuits, synchronous modems are more complicated and, thus, more expensive than asynchronous modems.

PSK is commonly used in medium speed synchronous voice-band modems, typically operating between 2400 bps and 4800 bps. More specifically, QPSK is generally used with 2400-bps modems and 8-PSK with 4800-bps modems. QPSK has a bandwidth efficiency of 2 bps/Hz; therefore, the baud rate and minimum bandwidth for a 2400-bps synchronous modem are 1200 baud and 1200 Hz, respectively. The standard 2400-bps synchronous modem is the Bell System 201C or equivalent. The 201C modem uses a 1600-Hz carrier frequency and has an output spectrum that extends from approximately 1000 Hz to 2200 Hz. Because 8-PSK has a bandwidth efficiency of 3 bps/Hz, the baud rate and minimum bandwidth for 4800-bps synchronous modems are 1600 baud and 1600 Hz, respectively. The standard 4800-bps synchronous modem is the Bell System 208A. The 208A modem also uses a 1600-Hz carrier frequency but has an output spectrum that extends from approximately 800 Hz to 2400 Hz. Both the 201C and the 208A are full-duplex modems designed to be used with four-wire private-line circuits. The 201C and 208A modems can operate over two-wire dial-up circuits but only in the simplex mode. There are also half-duplex two-wire versions of both modems: the 201B and 208B.

High-speed synchronous voice-band modems operate at 9600 bps and use 16-QAM modulation. 16-QAM has a bandwidth efficiency of 4 bps/Hz; therefore, the baud and minimum bandwidth for 9600-bps synchronous modems is 2400 baud and 2400 Hz, respectively. The standard 9600-bps modem is the Bell System 209A or equivalent. The 209A uses a 1650-Hz carrier frequency and has an output spectrum that extends from approximately 450 Hz to 2850 Hz. The Bell System 209A is a four-wire synchronous voice-band modem designed to be used on full-duplex private-line circuits. The 209B is the two-wire version designed for half-duplex operation on dial-up circuits.

Table 4-13 summarizes the Bell System voice-band modem specifications. The modems listed in the table are all relatively low speed by modern standards. Today, the Bell System–compatible modems are used primarily on relatively simple telemetry circuits, such as remote alarm systems and on metropolitan and wide-area private-line data networks, such as those used by department stores to keep track of sales and inventory. The more advanced, higher-speed data modems are described in a later section of this chapter.

4-12-7 Modem Synchronization

During the request-to-send/clear-to-send (RTS/CTS) delay, a transmit modem outputs a special, internally generated bit pattern called a training sequence. This bit pattern is used to synchronize (train) the receive modem at the distant end of the communications channel. Depending on the type of modulation, transmission bit rate, and modem complexity, the training sequence accomplishes one or more of the following functions:

1. Initializes the communications channel, which includes disabling echo and establishing the gain of automatic gain control (AGC) devices
2. Verifies continuity (activates RLSD in the receive modem)
3. Initialize descrambler circuits in receive modem
4. Initialize automatic equalizers in receive modem
5. Synchronize the receive modem’s carrier to the transmit modem’s carrier
6. Synchronize the receive modem’s clock to the transmit modem’s clock